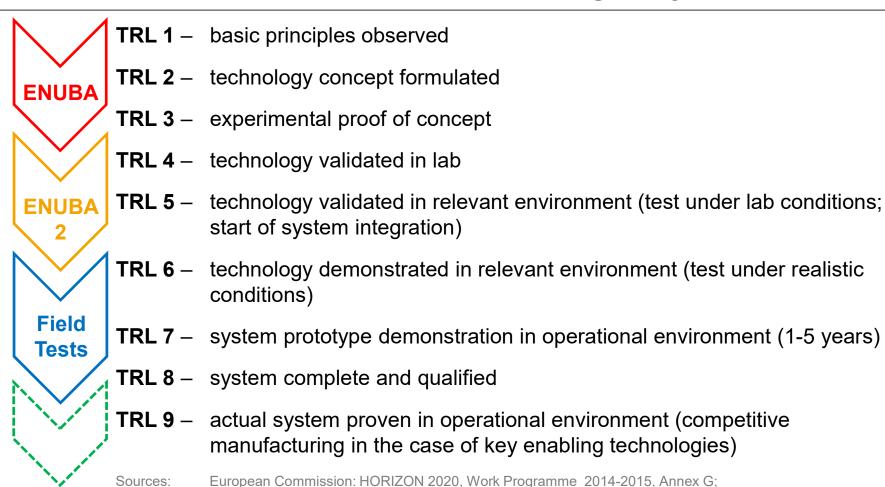
Validators, Demonstrators, Facilitators – The Roles of eHighway Field Tests on the Way to Large-scale Implementation.

ERS – Electric Road Systems 2019, Frankfurt am Main Manfred Boltze, Technische Universität Darmstadt



Introduction

Technology Readiness Levels – General Concept and Status of the eHighway

und der Beurteilungskriterien. Norm-Entwurf (ISO 16290:2013). Berlin 2014

Deutsches Institut für Normung (DIN): Raumfahrtsysteme – Definition des Technologie-Reifegrades (TRL)

Testing Under Real Traffic and Real Road Operations

Real traffic and traffic composition
Real road operations
Real environmental conditions
Real incidents
Real constructional conditions ...

- What are the impacts of the eHighway system on driving behaviour?
- Are there any problems regarding the visibility of traffic signs?
- Are there complications in cleaning traffic signs and cutting the green?
- Are there any impacts on traffic safety?

Testing with Real Transport Companies and Real Transport Processes

Vehicle	ELISA Transport Partner	Vehicle Delivery (Year/Month)	Transported Goods	No. of vehicles in Rhein-Main
01	Spedition Hans Adam Schanz GmbH & Co. KG	2019/04	emulsion paint and other Caparol products	9
02	Ludwig Meyer GmbH & Co. KG	2019/07	consumer goods esp. refrigerated food	80
03	Contargo GmbH & Co. KG (Rhenus Trucking GmbH & Co. KG)	2020/02	containers	> 1.000
04	Knauf Gips KG	2020/02	construction materials	40
05	Merck KGaA	2020/06	liquid sludge	6

Status: March 2019

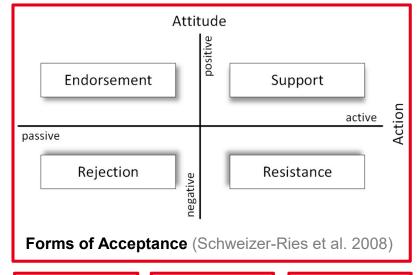
- What are the specific requirements of different types of transport companies on using the eHighway system?
- How can transport companies integrate the eHighway trucks into their daily tours?
- How robust is the eHighway technology under frequent use?

Testing with a Real Electric Power System

Real integration into the power grid
Real consumption and recuperation of energy
Real accounting and clearing

- How can the eHighway system be integrated into the overall power grid?
- Which impact has a larger number of eHighway trucks on the power supply network?
- How to design the accounting and clearing system for electric energy?

Testing Acceptance with Real People



Analyzing acceptance by different stakeholders Identifying (critical) influencing factors

Analyzing changes of acceptance over time

Relevant stakeholder groups:

- transport companies
- eHighway truck drivers and other truck drivers
- other road users and the general public
- road operators and electricity suppliers
- emergency and rescue service operators
- •

socio-political acceptance

market acceptance

local acceptance

- How are different stakeholder groups perceiving the eHighway system?
- Which factors are influencing the acceptance rate?
- How are the acceptance rates changing over time?

Developing Sub-systems

Further development of eHighway vehicles and infrastructure

Development and specification of many processes and procedures to deal with practical aspects of system implementation and operation

ELISA: Sample Sub-System Developments

- Planning, approval and tendering process for the eHighway infrastructure
- Processes for emergency and rescue services
- Software and processes for control center operations
- Specific aspects of formal vehicle registration

Creating Awareness and Acceptance

Oberleitungen auf Autobahnen – nicht nur einen Versuch wert!

Supporting the visibility of the system

Create possibilities to see, "feel" and test the system

Clear communication about the reasons for the project

Careful public relations management

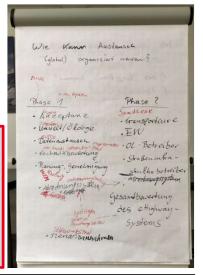
ELISA: Sample Activities to Create Awareness and Acceptance

- Information booths and visitor centre at the test track
- Project website, information and marketing materials
- Press conferences, interviews for press and other media
- Targeted stakeholder communication

Disseminating Results

Presentations and publications

Placing the topic in journals and conferences (as editor or organizer)

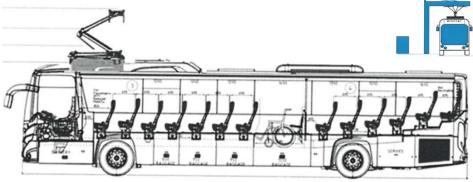

Contributing to working groups for standardization

National + international exchange Teaching

ELISA: Sample Activities for Disseminating Results

- Conference presentations: ERS, Hypermotion, DSVK, CIGOS, TRB, ICPLT, ...
- Publications: Book "eHighway Implementation Manual", various journal articles
- Development of implementation guidelines for specific stakeholder groups
- Bringing the topic into working groups for national standardization (FGSV etc.)

Identifying Needs for System Amendments and Further Potential Users



Analyzing real use cases and user requirements Identifying needs for system amendments Identifying further potential users

ELISA: Sample Activities for Identifying Needs for System Amendments

- Questionnaire for Transport Companies on Vehicle Requirements
- Identifying demand for other vehicle types (e.g. 16 t trucks)
- Identifying useful truck equipments (dumper hydraulics, PTO for cooling, ...)
- Feasibility Study of eHighway Buses

Providing a Nucleus for Large-scale Implementation

Supporting the development of large-scale implementation strategies

Developing a plan for using the test track after the testing period

Developing a plan for local system expansion

В	ewertungskriterien			Earbl	odiorung und Nu	itaworto			
Verfügbarkeit von Flächen und Raum	Seitenraumverfügbarkeit			Farbkodierung und Nutzwerte					
	Höhenrelevante Einschränkungen		4	3	2	1	0.0		
	Mindestabstände zu		Ohne		•				
	Landeplätze Hubschrauber		Einschrän	+			\rightarrow		
	Entwässerung		kungen						
Planungsrelevante Kriterien	Umweltverträglichkeit		В	ewertung	Gewicht	Punkte	Nutze		
	Schutzgebiete		Verfüg- barkeit von Flächen und Raum	Seitenraum-	-				
	Flurbereinigung			verfügbarkeit	5	4	20		
Energieversorgung	Erdkabeltrassen-Verläufe			Höhenrelevante Einschränkungen	5	0	0		
	Fläche für Unterwerke			Mindestabstände		560			
	Zugang zum Mittelspannungsnetz			zu	5	2	10		
	Abstand zur nächsten Ladestation			Landeplätze	5	4	20		
Bau, Betrieb und Verkehrs- management	Temp. Seitenstreifenfreigabe			Hubschrauber			- 20		
	Anzahl Fahrstreifen			Entwässerung	5	4	20		
	Höhenprofil				75				
Verkehrsnachfrage	Anzahl Logistikstandorte in d. Nähe			Weltere					
	Logistikflächen in Entwicklung	7				Total	***		
	Integrationsfähigkeit in Tourenmuster	7							

ELISA: Sample Activities for Providing a Nucleus for Large-scale Implementation

- Tool for assesing the eHighway equipment potential of road sections (BeTSIE)
- Optimimal allocation of charge-in-motion infrastructure for trucks on German motorways (dissertation Kevin Rolko)
- Planning extension and follow-up use of the test track (e.g. Airliner)

Pictures: © IVV 2019

Summary

Field Tests – Important Milestones on the Way to Large-scale Implementation

eHighway Field Tests

Roles

Validator and Demonstrator

Testing in a realistic environment:

- Real traffic and road operations
- Real transport companies and transport processes
- Real power supply system
- Real people (Acceptance)

Developing sub-systems

Creating awareness and acceptance

Disseminating results

Identifying needs for system amendments and further potential users

Providing a nucleus for large-scale implementation

cture: © Scania 20

Validators, Demonstrators, Facilitators – The Roles of eHighway Field Tests on the Way to Large-scale Implementation.

ERS – Electric Road Systems 2019, Frankfurt am Main Manfred Boltze, Technische Universität Darmstadt

